

Introduction

Audio-Visual Active Speaker Detection (AVASD)

- **Goal:** Determine if visible person in the video is speaking
- TalkNet: One of SOTA AVASD models as shown in Figure 1 (a)
- Applications: An indispensable front-end for user authentication
- Challenges: The adversarial robustness hasn't been investigated Contributions
- Expose that AVASD are susceptible to multi-modal attacks
- Propose audio-visual interaction loss (AVIL) enlarges inter-class difference and intra-class similarity for improving robustness
- The AVIL outperforms adversarial training by **33.14% mAP (%)**

Multi-Modal Adversarial Attacks

Figure 1. The multi-modal adversarial attack framework. x_a and x_v are audio and visual samples, y is ground-truth for the input. δ_a and δ_v are the adversarial perturbations for x_a and x_v . \tilde{y} is the prediction for the adversarial samples $\{\tilde{x}_a, \tilde{x}_v\}$.

Attacks Objective Function

- Goal: Use perturbations to make model predictions wrong
- **Perturbation:** Maximize cross entropy loss $\mathcal{L}_{CE_{all}}$ difference:

 $\arg \max \mathcal{L}_{CE_{all}}(\tilde{x}_a, \tilde{x}_v, y), s.t. ||\delta_a||_p \le \epsilon_a, ||\delta_v||_p \le \epsilon_v,$

where ϵ_a , ϵ_v are attack budget, $|| \cdot ||_p$ is the *p*-norm.

Attacks Algorithms

- Momentum-based Iterative Method (MIM)
- Projected Gradient Descent (PGD)

Push-Pull: Characterizing the Adversarial Robustness for Audio-Visual Active Speaker Detection

¹National Taiwan University

²The Chinese University of Hong Kong

Attacks Defense by Audio-Visual Interaction Loss (AVIL)

(a) Intra-modality inter-class dispersion

(d) Inter-modality intra-class distance (c) Inter-modality intra-class dissimilarity

 Audio Speech × Audio Non-speech
Visu \bigcirc \times \bigcirc \times Centers of Different Embedding \leftrightarrow Figure 2. The Audio-Visual Inter

Training Objective Function

• Optimize cross entropy loss $\mathcal{L}_{CE_{all}}$ and AVILs during training

Rationale of AVILs

- Goal: Enable the model less susceptible to adversarial attacks
- \mathcal{L}_1 : Equip the model with better discrimination of embeddings
- \mathcal{L}_2 - \mathcal{L}_4 : Force the model to render compact intra-class features

Experimental Setup

- **Dataset:** AVA-ActiveSpeaker;
- Evaluation Metric: Mean average precision (mAP (%))

Xuanjun Chen^{1*} Haibin Wu^{12*} Helen Meng^{2†} Hung-Yi Lee^{1†} Jyh-Shing Roger Jang^{1†}

(b) Intra-modality intra-class dissimilarity

ual Speech 🛛 🗙	Visual Non-speech
Maximize	>···< Minimize
raction Loss.	

(b) Single-modal attack V.S. Multi-modal attack (a) Black-box attacker V.S. White-box attacker Figure 3. Adversarial attack performance of AVASD models under PGD. Black-box attackers are specTalkNet and ncTalkNet. White-box attacker is TalkNet. $\epsilon_a = \epsilon_{av} \times 10^{-4}$ and $\epsilon_v = \epsilon_{av} \times 10^{-1}$.

	Model	Adversarial training	Clean mAP (%)	MIM mAP (%)	PGD mAP (%)
(A)	$\mathcal{L}_{CE_{all}}$	×	92.58	49.30	47.79
(B1)	$\mathcal{L}_{CE_{all}}$	MIM	91.34	52.18	54.23
(B2)	$\mathcal{L}_{CE_{all}}$	PGD	91.68	58.3	56.06
(D1)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_2$	×	92.46	67.89	64.11
(D2)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_3$	×	92.20	47.92	49.27
(D3)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_4$	×	91.81	93.34	93.15
(D4)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_2 + \mathcal{L}_3$	×	92.27	63.36	61.54
(D5)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_2 + \mathcal{L}_4$	×	91.93	66.28	67.75
(D6)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_3 + \mathcal{L}_4$	×	91.70	92.48	91.01
(E1)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_4$	MIM	91.70	99.98	99.97
(E2)	$\mathcal{L}_{CE_{all}} + \mathcal{L}_1 + \mathcal{L}_4$	PGD	91.88	97.47	98.67

Table 1. AVASD mAP(%) of different models under MIM and PGD. The test data from doing the intersection of the data with the correct prediction for model (A)-(E2).

Attacker Perspective

Defense Perspective

Experiment

• Figure 3 (a): TalkNet is vulnerable to white-box attacks • Figure 3 (b): TalkNet is vulnerable to multi-modal and visual attacks

• Table 1: Combining AVIL with adversarial training can leverage their complementary to reach the best adversarial robustness.

