Multimodal Transformer Distillation for Audio-Visual Synchronization

Chung-Che Wang Hung-yi Lee Jyh-Shing Roger Jang Xuanjun Chen Haibin Wu National Taiwan University

Audio-Visual Synchronization (AVS)

- **Goal:** Determine whether the mouth and speech are synchronized • VocaLiST: A SOTA model as shown in the teacher model in Figure 1
- **Applications:** Most audio-visual applications, such as dubbing
- Challenges: Require high computing resources Contributions
- Proposed an MTDVocaLiST model, which is trained by our proposed Multimodal Transformer Distillation (MTD) loss
- MTD encourages MTDVocaLiST to mimic the cross-attention distribution and value-relation of VocaLiST deeply
- MTDVocaLiST outperforms similar-size models, reducing

Table 1. Accuracy of different distillation methods in evaluation.

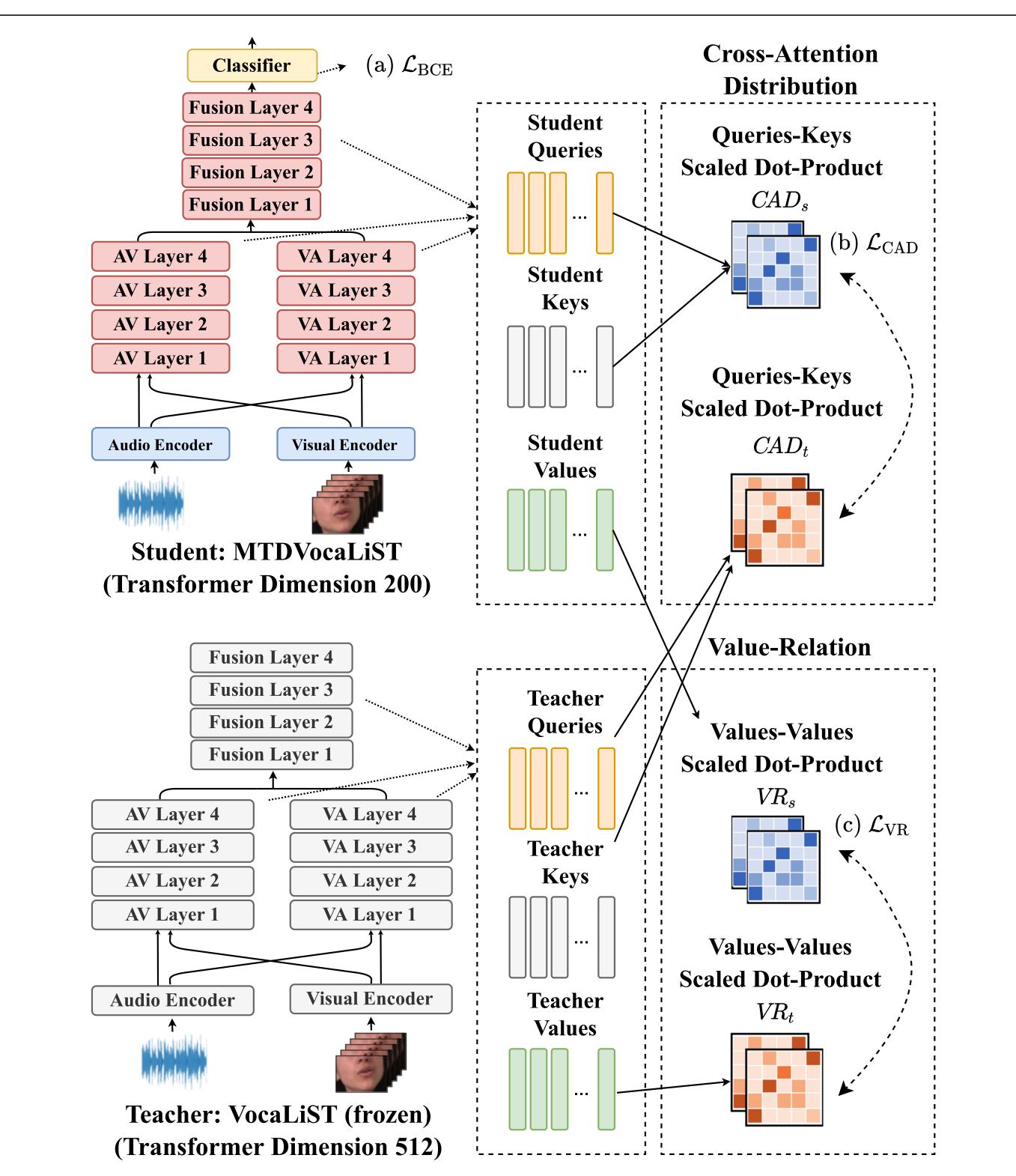
Distillation method	Input frame length (seconds)						
	5 (0.2s)	7 (0.28s)	9 (0.36s)	11 (0.44s)	13 (0.52s)	15 (0.6s)	
\mathcal{L}_{BCE}	71.36	81.44	88.84	93.41	96.19	97.69	
KD	80.87	88.62	93.48	96.32	97.90	98.82	
RKD	86.06	92.42	95.95	97.80	98.75	99.29	
MiniLM*	85.60	92.03	95.91	97.72	98.72	99.25	
FitNets	90.81	95.48	97.77	98.81	99.42	99.66	
MTD	91.45	95.75	97.99	98.95	99.46	99.68	

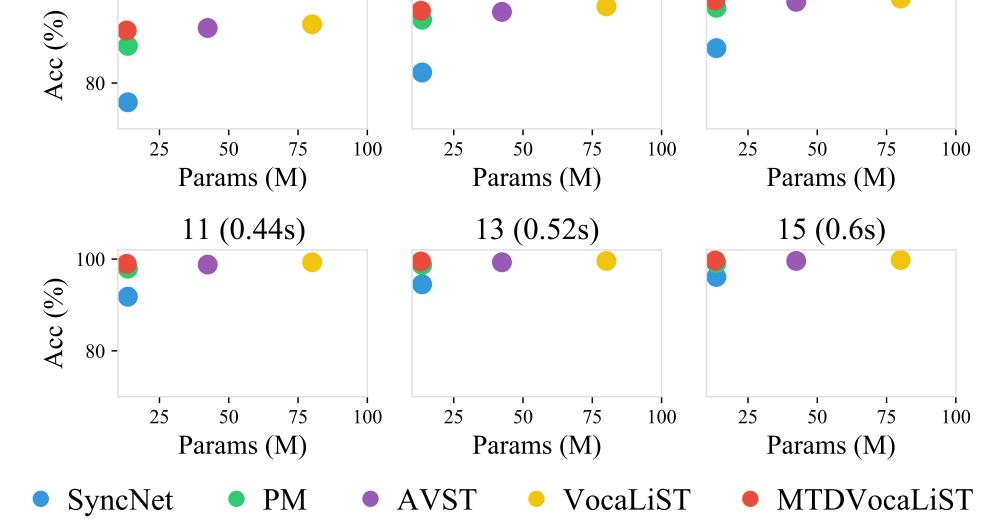
Figure 2. Comparison of model size and accuracy.

5 (0.2s)	7 (0.28s)	9 (0.36s)			
100 -					

VocaLiST's size by 83.52% while maintaining similar performance

MTDVocaLiST





Comparison with Different Distillation Methods (Table 1)

- Length 5: \mathcal{L}_{BCE} results in the lowest accuracy at 71.36%.
- Length 5: MTD significantly improves accuracy, surpassing KD by 10.58%, RKD by 5.39%, MiniLM* by 5.85%, and FitNets by 0.64%. • Similar trends are observed across different input frame lengths.
- Comparison with SOTA models (Figure 2)
- MTDVocaLiST outperforms similar-size SOTA models, SyncNet, and Perfect Match models by 15.65% and 3.35%;
- MTDVocaLiST reduces the model size of VocaLiST by 83.52%, yet still maintaining similar performance.

Figure 1. The proposed MTDVocaLiST model. (a) binary cross entropy loss. (b) cross-attention distribution distillation loss. (c) value-relation distillation loss.

Naïve Multimodal Transformer Distillation (NMTD)

$$\mathcal{L}_{NMTD} = w_0 \cdot \mathcal{L}_{BCE} + \sum_{l}^{L} w_{l1} \cdot \mathcal{L}_{CAD_l} + \sum_{l}^{L} w_{l2} \cdot \mathcal{L}_{VR_l}, \qquad (1)$$

• w_0 , w_{l1} , and w_{l2} represent the weights for \mathcal{L}_{BCE} , \mathcal{L}_{CAD_l} , and \mathcal{L}_{VR_l} • L denotes a candidate layer set, *l*-th is the sub-layer in the set Multimodal Transformer Distillation (MTD)

• After utilizing uncertainty weighting [1], overall MTD is as follows:

Ablation study and analysis

Figure 4. Different layer selection strategies. Figure 3. Ablation study of NMTD loss.

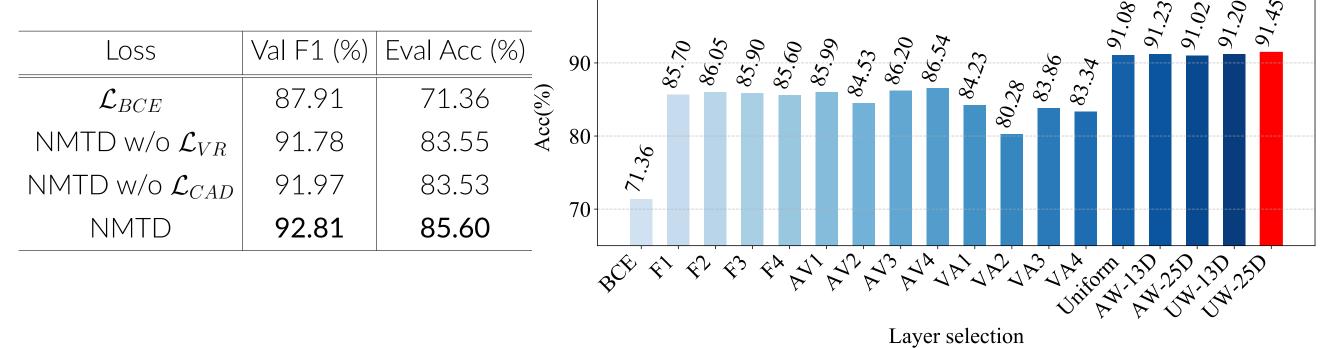
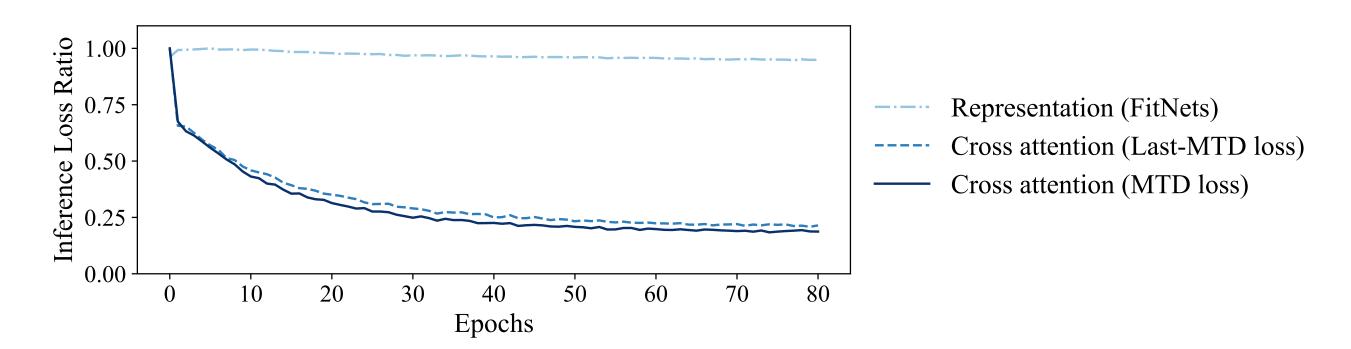


Figure 5. Comparison of Transformer representation and cross-attention loss in **inference**. Note that the MTDVocaLiST only optimizes the MTD loss during **training**.



Indispensability (Figure 3): Both cross-attention distribution and value-relation contribute significantly to NMTD loss

$$\mathcal{L}_{MTD} = \sum_{\tau}^{I} \left(\frac{1}{2 \cdot w_{\tau}^2} \cdot \mathcal{L}_{\tau} + ln(1 + w_{\tau}^2) \right),$$

• T represents a task set

• \mathcal{L}_{τ} denotes the τ -th loss, which could be \mathcal{L}_{BCE} , \mathcal{L}_{CAD} or \mathcal{L}_{VR} loss • w_{τ} are learnable parameters. $ln(1+w_{\tau}^2)$ serves to enforce positive regularization values

Experiment setup

- **Dataset:** Lip Reading Sentences 2 (LRS2) dataset
- Training: Positive and negative samples are sampled on the fly
- Evaluation protocol: Accuracy of the cross-modal retrieval task

Layer selection (Figure 4)

• Distilling any Transformer layer significantly improves performance. • VA layers contribute minimally to the student's final performance. • Single-layer distillation and BCE training perform worse. • UW-25D layer weighting outperforms Uniform, AW and UW-13D Transformer behavior and Transformer representation (Figure 5) • The Transformer representation loss will not decrease along with the cross attention loss in the inference phase of MTDVocaLiST

References

[1] Kendall et al., "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics," arXiv:1705.07115, 2017.

(2)