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Introduction

Audio-Visual Synchronization (AVS)

• Goal: Determine whether the mouth and speech are synchronized

• VocaLiST: A SOTAmodel as shown in the teacher model in Figure 1

• Applications: Most audio-visual applications, such as dubbing

• Challenges: Require high computing resources

Contributions

• Proposed an MTDVocaLiST model, which is trained by our

proposed Multimodal Transformer Distillation (MTD) loss

• MTD encourages MTDVocaLiST to mimic the cross-attention

distribution and value-relation of VocaLiST deeply

• MTDVocaLiST outperforms similar-size models, reducing

VocaLiST’s size by 83.52% while maintaining similar performance
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Figure 1. The proposed MTDVocaLiST model. (a) binary cross entropy loss. (b)

cross-attention distribution distillation loss. (c) value-relation distillation loss.

Naïve Multimodal Transformer Distillation (NMTD)

LNMTD = w0 · LBCE +
L∑
l

wl1 · LCADl
+

L∑
l

wl2 · LVRl
, (1)

• w0, wl1, and wl2 represent the weights for LBCE, LCADl
, and LV Rl

• L denotes a candidate layer set, l-th is the sub-layer in the set

Multimodal Transformer Distillation (MTD)

• After utilizing uncertainty weighting [1], overall MTD is as follows:

LMTD =
T∑
τ

(
1

2 · w2
τ

· Lτ + ln(1 + w2
τ)
)

, (2)

• T represents a task set

• Lτ denotes the τ -th loss, which could be LBCE, LCAD or LV R loss

• wτ are learnable parameters. ln(1 + w2
τ) serves to enforce positive

regularization values

Experiment setup

• Dataset: Lip Reading Sentences 2 (LRS2) dataset

• Training: Positive and negative samples are sampled on the fly

• Evaluation protocol: Accuracy of the cross-modal retrieval task

Main results

Table 1. Accuracy of different distillation methods in evaluation.

Distillation
method

Input frame length (seconds)

5
(0.2s)

7
(0.28s)

9
(0.36s)

11
(0.44s)

13
(0.52s)

15
(0.6s)

LBCE 71.36 81.44 88.84 93.41 96.19 97.69

KD 80.87 88.62 93.48 96.32 97.90 98.82

RKD 86.06 92.42 95.95 97.80 98.75 99.29

MiniLM∗ 85.60 92.03 95.91 97.72 98.72 99.25

FitNets 90.81 95.48 97.77 98.81 99.42 99.66

MTD 91.45 95.75 97.99 98.95 99.46 99.68

Figure 2. Comparison of model size and accuracy.
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Comparison with Different Distillation Methods (Table 1)

• Length 5: LBCE results in the lowest accuracy at 71.36%.

• Length 5: MTD significantly improves accuracy, surpassing KD by

10.58%, RKD by 5.39%, MiniLM* by 5.85%, and FitNets by 0.64%.

• Similar trends are observed across different input frame lengths.

Comparison with SOTA models (Figure 2)

• MTDVocaLiST outperforms similar-size SOTA models, SyncNet,

and Perfect Match models by 15.65% and 3.35%;

• MTDVocaLiST reduces the model size of VocaLiST by 83.52%, yet

still maintaining similar performance.

Ablation study and analysis

Figure 3. Ablation study of

NMTD loss.

Loss Val F1 (%) Eval Acc (%)

LBCE 87.91 71.36

NMTD w/o LV R 91.78 83.55

NMTD w/o LCAD 91.97 83.53

NMTD 92.81 85.60

Figure 4. Different layer selection strategies.
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Figure 5. Comparison of Transformer representation and cross-attention loss in

inference. Note that the MTDVocaLiST only optimizes the MTD loss during training.
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Indispensability (Figure 3): Both cross-attention distribution and

value-relation contribute significantly to NMTD loss

Layer selection (Figure 4)

• Distilling any Transformer layer significantly improves performance.

• VA layers contribute minimally to the student’s final performance.

• Single-layer distillation and BCE training perform worse.

• UW-25D layer weighting outperforms Uniform, AW and UW-13D

Transformer behavior and Transformer representation (Figure 5)

• The Transformer representation loss will not decrease along with

the cross attention loss in the inference phase of MTDVocaLiST
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